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We consider optimization and equilibrium models and algorithms for dynamic resource allocation. The most important 
accomplishment would be the paper: “The Simplex and Policy-Iteration Methods are Strongly Polynomial for the Markov 
Decision Problem with a Fixed Discount Rate,” where I proved that the classic policy-iteration method (Howard 1960), 
including the Simplex method (Dantzig 1947) with the most-negative-reduced-cost pivoting rule, is a strongly 
polynomial-time exact algorithm for solving the Markov decision problem (MDP) exactly with any fixed discount factor. 
Markov decision process (e.g., Shapley, 1953) is arguably one of the most widely used decision models and 
methodologies in practice, as a celebrated example to showcase the power of optimization to help making sensible 
decisions in a complex system and stochastic environment. And the two methods are the most used methods but their 
theoretical complexities were open before this result. 
We also explore an online resource allocation in a set of research publications, including prediction market, Internet 
auction, and etc.
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Abstract: We consider optimization and equilibrium models and algorithms for dynamic 
resource allocation. The most important accomplishment of the project would be the 
paper: “The Simplex and Policy-Iteration Methods are Strongly Polynomial for the 
Markov Decision Problem with a Fixed Discount Rate,” where I proved that the classic 
policy-iteration method (Howard 1960), including the Simplex method (Dantzig 1947) 
with the most-negative-reduced-cost pivoting rule, is a strongly polynomial-time exact 
algorithm for solving the Markov decision problem (MDP) exactly with any fixed 
discount factor. Markov decision process (e.g., Shapley, 1953) is arguably one of the 
most widely used decision models/methodologies in practice, as a celebrated example to 
showcase the power of optimization to help making sensible decisions in a complex 
system and stochastic environment. And the two methods are the most used methods in 
real world applications but their theoretical complexities were open before our result. We 
also explore an online and dynamic resource allocation and mechanism design in a set of 
research publications, including prediction market, Internet auction, spectrum 
allocation/trading model, sensor network localization, and etc, where demands for 
resources arrive sequentially and a decision/trade has to make as soon as a (pair) demand 
order(s) arrives. We develop online algorithms/decision rules, similar to online routing 
and online combinatorial auctions, for general dynamic resource to achieve near-optimal 
social utility value and/or resource utilization. 
  
We outline major accomplishments that have been made from the project. 
 
Markov Decision Process 
 
[1] Ye, “The Simplex and Policy-Iteration Methods are Strongly Polynomial for the 
Markov Decision Problem with a Fixed Discount Rate,” Mathematics of Operations 
Research, 36:4 (2011) 593-603.  
 
Markov decision process (e.g., Shapley, 1953) is arguably one of the most widely used 
dynamic decision models/methodologies in practice. It has been an integrated part of 
virtually any textbook on Operations Research, as a celebrated example to showcase the 
power of optimization to help making sensible decisions in a complex system and 
stochastic environment. Although many heuristic and linear programming methods have 
been proposed and well studied, it had been a long standing open problem to find a 
strongly polynomial time algorithm (independent of the problem data) for solving the 
Markov decision problem (MDP). Ye (Ye, “A new complexity result on solving the 
Markov decision problem,” Mathematics of Operations Research, 30:3 (2005) 733-749)  
resolved this open problem partially first in There, he developed a novel combinatorial 
interior point algorithm, and proved a strongly polynomial-time bound for solving the 
MDP problem exactly when the discount factor is fixed. This was the first strongly 
polynomial-time algorithm for MDP even with fixed discount factors. The only 



previously known result is a strongly polynomial-time algorithm (Papadimitriou, C. H., J. 
N. Tsitsiklis, 1987) for the deterministic MDP (that is reduced to a minimum-cycle 
network flow problem), which is based on Karp’s minimum-cycle network flow 
algorithm. 
 
More impressively, very recently Ye, in [1], proved that the classic policy-iteration 
method (Howard 1960), including the Simplex method (Dantzig 1947) with the most-
negative-reduced-cost pivoting rule, is also a strongly polynomial-time exact algorithm 
for solving the Markov decision problem (MDP) exactly with any fixed discount factor. 
Furthermore, the computational complexity of the policy-iteration method (including the 
Simplex method) is better than that of the interior-point algorithm, which matches its 
superior practical performance. The result is surprising because the simplex method with 
the same pivoting rule was shown to be exponential for solving a general linear 
programming problem (Klee and Minty, 1972), the simplex method with the smallest 
index pivoting rule was shown to be exponential for solving an MDP regardless of 
discount rates (Melekopoglou and Condon, 1994), and the policy-iteration method was 
recently shown to be exponential for solving undiscounted MDPs under the average cost 
criterion. This is an amazing result, given the fact that these methods exist for over 50 to 
60 years, were studied extensively by many excellent researchers, and were popularly 
used in real-world applications.  
 
In addition, Ye’s analyses were adapted by a group computer scientists (Hansen, 
Miltersen and Zwick, 2011) to show that the policy or strategy iteration method is 
strongly polynomial for 2-player turn-based stochastic games with discounted zero-sum 
rewards. This provides the first strongly polynomial algorithm for solving these games, 
resolving a long standing open problem. 
 
Online Optimization and Mechanism Design 
 
[2] Agrawal, Delage, Peters, Wang, and Ye, “A Unified Framework for Dynamic 
Prediction Market Design,” Operations Research, 59:3 (2011) 550-568; 
[3]  Agrawal, Ding, Sebari, and Ye, “Price of Correlations in Stochastic Optimization” to 
appear in Operations Research. 
 
Recently, coinciding with and perhaps driving the increased popularity of prediction 
markets, several novel pari-mutuel mechanisms have been developed such as the 
logarithmic market-scoring rule (LMSR), the cost-function formulation of market makers, 
utility-based markets, and the sequential convex pari-mutuel mechanism (SCPM). In [2], 
we present a convex optimization framework that unifies these seemingly unrelated 
models for centrally organizing contingent claims markets. The existing mechanisms can 
be expressed in our unified framework by varying the choice of a concave value function. 
We show that this framework is equivalent to a convex risk minimization model for the 
market maker. This facilitates a better understanding of the risk attitudes adopted by 
various mechanisms. The unified framework also leads to easy implementation because 
we can now find the cost function of a market maker in polynomial time by solving a 
simple convex optimization problem. In addition to unifying and explaining the existing 



mechanisms, we use the generalized framework to derive necessary and sufficient 
conditions for many desirable properties of a prediction market mechanism such as 
proper scoring, truthful bidding (in a myopic sense), efficient computation, controllable 
risk measure, and guarantees on the worst-case loss. As a result, we develop the first 
proper, truthful, risk-controlled, loss-bounded (independent of the number of states) 
mechanism; none of the previously proposed mechanisms possessed all these properties 
simultaneously. Thus, our work provides an effective tool for designing new prediction 
market mechanisms. We also discuss possible applications of our framework to dynamic 
resource pricing and allocation in general trading markets. 
 
We believe that our framework of [2] for designing dynamic prediction markets has 
intimate connections to other dynamic trading markets such as online auction of goods, 
and could lead to interesting results for these markets as well. In general, any dynamic 
resource allocation and pricing scheme relies crucially on the trade-off between the profit 
achieved by exploiting the resource now versus the value of saving the goods for the 
future and exploring the market further. This future value of resources is captured in our 
framework by the concave value function. Our risk-based formulation also formalized 
how this value function captures the trade-off between learning the preferences of the 
traders versus maximizing instant profit via a penalty function. This bears similarities to 
the classic exploration versus exploitation trade-off for general trading markets. 
Additionally, our mechanism achieves incentive compatibility using the VCG allocation 
and pricing scheme popular for online auctions of goods. Further investigation of 
implications of our results on other trading and auction markets is part of an ongoing 
research. 
 
When decisions are made in presence of high dimensional stochastic data, handling joint 
distribution of correlated random variables can present a formidable task, both in terms of 
sampling and estimation as well as algorithmic complexity. A common heuristic is to 
estimate only marginal distributions and substitute joint distribution by independent 
(product) distribution. In [3], we study possible loss incurred on ignoring correlations 
through a distributionally-robust stochastic programming model, and quantify that loss as 
Price of Correlations (POC). Using techniques of cost-sharing from game theory, we 
identify a wide class of problems for which POC has a small upper bound. To our interest, 
this class will include many stochastic convex programs, uncapacitated facility location, 
Steiner tree, and submodular functions, suggesting that the intuitive approach of 
assuming independent distribution approximates the robust model for these stochastic 
optimization problems. Additionally, we demonstrate hardness of bounding POC via 
examples of subadditive and supermodular functions that have large POC. We find that 
our results are also useful for solving many deterministic optimization problems like 
welfare maximization, k-dimensional matching and transportation problem, under certain 
conditions. 
 
In summary, [3] proposed an approximation algorithm to solve the DRSP model that 
simply ignores the correlations and can be implemented efficiently, and introduced a new 
concept of POC to measure the approximation ratio achieved. We believe the concept of 
POC is especially attractive because it characterizes the cases when the seemingly 



pessimistic worst case joint distribution is close to the more natural independent 
distribution, in the sense that former can be substituted by the latter. By proving upper an 
lower bounds on POC for a wide range of problems, our research sheds important 
insights on when correlations can be ignored in practice. We also show that many 
deterministic optimization problems that involve matching or partitioning constraints can 
be formulated as the problem of computing worst case distribution with given marginals. 
Hence, our results provide approximation algorithms for those as well. Finally, our 
methodology of bounding POC using cost-sharing schemes is a novel application of these 
algorithmic game theory techniques and deserves further study. 
 
Computational Game Theory and Market Equilibrium 
 
[4] Zhu, Dang and Ye, “A FPTAS for Computing a Symmetric Leontief Competitive 
Economy Equilibrium,” Math Programming 131 (2012) 113–129. 
[5] Dang, Zhu and Ye, “An interior-point path-following algorithm for computing a 
Leontief economy equilibrium,” Computational Optimization and Applications 50:2 
(2011). 
[6] Yao, Armbruster, and Ye “Dynamic Spectrum Management with the Competitive 
Market Model,” IEEE Tran on Signal Processing 58:4 (2010) 2442-2446. 
 
The Arrow-Debreu competitive market equilibrium problem which was first formulated 
by Leon Walras in 1874. In this problem everyone in a population of n players has an 
initial endowment of a divisible good and a utility function for consuming all goods---
their own and others. Every player produce/sells the entire initial endowment and then 
uses the revenue to buy a bundle of goods such that his or her utility function is 
maximized. Walras asked whether prices could be set for everyone's good such that this 
is possible. An answer was given by Arrow and Debreu (1954) who showed that such 
equilibrium would exist if the utility functions were concave. Their proof was non-
constructive and did not offer any algorithm to find such equilibrium prices. 
Fisher (1891) was the first to consider an algorithm to compute equilibrium prices for a 
special case model where players are divided into two sets: producers and consumers. 
Scarf in 1973 also developed an algorithm to solve general fixed point problems, 
including the competitive market equilibrium problem. His algorithm, however, was not 
proved to be polynomial-time. 
 
If the utility functions are linear, Eisenberg and Gale (1959) gave a nonlinear convex 
optimization setting to formulate the Fisher model and Nenakhov and Primak (1983, also 
Jain 2004) gave a nonlinear convex optimization setting to formulate the general Arrow-
Debreu model. Thus, the Ellipsoid method can be used to solve them approximately in 
polynomial time where the bound is of order O(n8L). Recenty, Ye developed an interior-
point algorithm that solves both the Fisher and Arrow-Debreu models exactly, when the 
utilities are linear, in polynomial time of order O(n4L), which is in line with the best 
complexity bound for linear programming of the same dimension and size. These results 
motivated many researchers in the past few years look for polynomial-time algorithms for 
solving more general utility equilibrium problems, such as the Leontief utility, which is a 
piece-wise linear concave function. However, soon after Ye and his co-authors 
announced that the computation of the Arrow-Debreu equilibrium with the Leontief 



utility is NP-hard, which effectively terminates any hope to develop a polynomial-time 
algorithm unless P=NP.  
 
On the positive sides, in [4], we consider a linear complementarity problem (LCP) arisen 
from the Nash and Arrow–Debreu with Leontief utility competitive economy equilibria 
where the LCP coefficient matrix is symmetric. We prove that the decision problem, to 
decide whether or not there exists a complementary solution, is NP-complete. Under 
certain conditions, an LCP solution is guaranteed to exist and we present a fully 
polynomialtime approximation scheme (FPTAS) for approximating a complementary 
solution, although the LCP solution set can be non-convex or non-connected. Our method 
is based on approximating a quadratic social utility optimization problem (QP) and 
showing that a certain KKT point of the QP problem is an LCP solution. Then, we further 
show that such a KKT point can be approximated with a new improved running time 
complexity. We also report computational results which show that the method is highly 
effective. Applications in competitive market model problems with other utility functions 
are also presented, including global trading and dynamic spectrum management problems. 
 
Then, in [5], we present an interior-point path-following algorithm for computing a 
nonsymmetric Leontief economy equilibrium, that is, an exchange market equilibrium 
with Leontief utility functions, which is known to be in the complexity class of PPAD-
complete. We construct a smooth homotopy interior-point path to tackle this system. We 
prove that there always exists a continuously differentiable path leading to a 
complementary solution of the nonlinear system and at the same time to a Leontief 
economy equilibrium associated with the solution. We also report preliminary 
computational results to show effectiveness of the path-following Newton method. 
 
Dynamic spectrum management (DSM) is a technology to efficiently share the spectrum 
among the users in a communication system. DSM can be used in the digital subscriber 
line (DSL) systems to reduce cross-talk interference and improve total system throughput. 
DSM is also a promising candidate for multiple access in cognitive radio. In DSM, 
multiple users coexist in a channel, and this causes co-channel interference. The goal of 
DSM is to manage the power allocations in all the channels to maximize the sum of the 
data rates of all the users, subject to power constraints. Unfortunately, this problem is 
non-convex and cannot be solved efficiently in polynomial time. In [6], have shown that 
dynamic spectrum management (DSM) using the market competitive equilibrium (CE), 
which sets a price for transmission power on each channel, leads to better system 
performance in terms of the total data transmission rate (by reducing cross talk), than 
using the Nash equilibrium (NE). But how to achieve such a CE is an open problem. We 
show that the CE is the solution of a linear complementarity problem (LCP) and can be 
computed efficiently. We propose a decentralized tˆatonnement process for adjusting the 
prices to achieve a CE. We show that under reasonable conditions, any tatonnement 
process converges to the CE. The conditions are that users of a channel experience the 
same noise levels and that the cross-talk effects between users are low-rank and weak. 
 
Optimization for Sensor Network 
 



[7] Zhu, So and Ye, “Universal Rigidity and Edge Sparsification for Sensor Network 
Localization,” to appear in SIAM J. Optimization, 2012.  
[8] Alfakih, Taheri, and Ye, “On stress matrices of (d + 1)-lateration frameworks in 
general position,” to appear in Math Programming, 2012. 
 
Owing to their high accuracy and ease of formulation, there has been great interest in 
applying convex optimization techniques, particularly that of semidefinite programming 
(SDP) relaxation, to tackle the sensor network localization problem in recent years. 
However, a drawback of such techniques is that the resulting convex program is often 
expensive to solve. In order to speed up computation, various edge sparsification 
heuristics have been proposed, whose aim is to reduce the number of edges in the input 
graph. Although these heuristics do reduce the size of the convex program and hence 
making it faster to solve, they are often ad hoc in nature and do not preserve the 
localization properties of the input. As such, one often has to face a tradeoff between 
solution accuracy and computational effort. In [7], we propose a novel edge sparsification 
heuristic that can provably preserve the localization properties of the original input. At 
the heart of our heuristic is a graph decomposition procedure, which allows us to identify 
certain sparse generically universally rigid subgraphs of the input graph. Our 
computational results show that the proposed approach can significantly reduce the 
computational and memory complexities of SDP–based algorithms for solving the sensor 
network localization problem. Moreover, it compares favorably with existing speedup 
approaches, both in terms of accuracy and solution time. 
 
Paper [8] is a technical paper that resolved an important mathematical question on the 
rigidity of a sensor network and structure. Let (G, P) be a bar framework of n vertices in 
general position in Rd, for d ≤ n − 1, where G is a (d + 1)-lateration graph. In [8], we 
presented a constructive proof that (G, P) admits a positive semidefinite stress matrix 
with rank (n−d−1). We also prove a similar result for a sensor network, where the graph 
consists of m(≥ d + 1) anchors. 
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